skip to content
Krishna Sundarram
RSS Feed
The Making of the Atomic Bomb

The Making of the Atomic Bomb

by Richard Rhodes

Status:
Abandoned
Format:
eBook
ISBN:
9781471111235
Highlights:
22

Highlights

Page 8

PRAISE FOR THE MAKING OF THE ATOMIC BOMB

Note: Only 5 Nobel Laureates praising it. I expected more.

Page 116

“Knowledge,” Niels Bohr once noted, “is itself the basis for civilization.” You cannot have the one without the other; the one depends upon the other. Nor can you have only benevolent knowledge; the scientific method doesn’t filter for benevolence. Knowledge has consequences, not always intended, not always comfortable, not always welcome. The earth revolves around the sun, not the sun around the earth. “It is a profound and necessary truth,” Robert Oppenheimer would say, “that the deep things in science are not found because they are useful; they are found because it was possible to find them.”

Page 124

Bohr proposed once that the goal of science is not universal truth. Rather, he argued, the modest but relentless goal of science is “the gradual removal of prejudices.” The discovery that the earth revolves around the sun has gradually removed the prejudice that the earth is the center of the universe. The discovery of microbes is gradually removing the prejudice that disease is a punishment from God. The discovery of evolution is gradually removing the prejudice that Homo sapiens is a separate and special creation.

Page 240

The visionary English novelist was one among Szilard’s network of influential acquaintances, a network he assembled by plating his articulate intelligence with the purest brass.

Page 255

I said to them at the time that I did of course not know who would win the war, but I did know how the war ought to end. It ought to end by the defeat of the central powers, that is the Austro-Hungarian monarchy and Germany, and also end by the defeat of Russia. I said I couldn’t quite see how this could happen, since they were fighting on opposite sides, but I said that this was really what ought to happen. In retrospect I find it difficult to understand how at the age of sixteen and without any direct knowledge of countries other than Hungary, I was able to make this statement.10 He seems to have assembled his essential identity by sixteen. He believed his clarity of judgment peaked then, never to increase further; it “perhaps even declined.”11

Note: Hahaha. Remarkable judgement for sure.

Page 297

If someone whose specialty you wished to learn taught at Munich, you went to Munich; if at Göttingen, you went to Göttingen. Science grew out of the craft tradition in any case; in the first third of the twentieth century it retained—and to some extent still retains—an informal system of mastery and apprenticeship over which was laid the more recent system of the European graduate school. This informal collegiality partly explains the feeling among scientists of Szilard’s generation of membership in an exclusive group, almost a guild, of international scope and values.

Page 335

In the summer of 1922 the rate of exchange in Germany sank to 400 marks to the dollar. It fell to 7,000 to the dollar at the beginning of January 1923, the truly terrible year. One hundred sixty thousand in July. One million in August. And 4.2 trillion marks to the dollar on November 23, 1923, when adjustment finally began. Banks advertised for bookkeepers good with zeros and paid out cash withdrawals by weight. Antique stores filled to the ceiling with the pawned treasures of the bankrupt middle class. A theater seat sold for an egg. Only those with hard currency—mostly foreigners—thrived at a time when it was possible to cross Germany by first-class railroad carriage for pennies, but they also earned the enmity of starving Germans. “No, one did not feel guilty,” the visiting Englishman crows, “one felt it was perfectly normal, a gift from the gods.”33

Page 368

What he thought, in three weeks, was how to solve a baffling inconsistency in thermodynamics, the branch of physics that concerns relationships between heat and other forms of energy. There are two thermodynamic theories, both highly successful at predicting heat phenomena. One, the phenomenological, is more abstract and generalized (and therefore more useful); the other, the statistical, is based on an atomic model and corresponds more closely to physical reality. In particular, the statistical theory depicts thermal equilibrium as a state of random motion of atoms. Einstein, for example, had demonstrated in important papers in 1905 that Brownian motion—the continuous, random motion of particles such as pollen suspended in a liquid—was such a state.39 But the more useful phenomenological theory treated thermal equilibrium as if it were static, a state of no change. That was the inconsistency.

Page 437

A wild burst of optimism—or opportunism—energized Szilard in 1930 to organize a group of acquaintances, most of them young physicists, to begin the work of banding together. He was convinced in the mid-1920s that “the parliamentary form of democracy would not have a very long life in Germany” but he “thought that it might survive one or two generations.” Within five years he understood otherwise.58, 59 “I reached the conclusion something would go wrong in Germany … in 1930.” Hjalmar Schacht, the president of the German Reichsbank, meeting in Paris that year with a committee of economists called to decide how much Germany could pay in war reparations, announced that Germany could pay none at all unless its former colonies, stripped from it after the war, were returned. “This was such a striking statement to make that it caught my attention, and I concluded that if Hjalmar Schacht believed he could get away with this, things must be rather bad. I was so impressed by this that I wrote a letter to my bank and transferred every single penny I had out of Germany into Switzerland.”60

Page 440

“I reached the conclusion something would go wrong in Germany … in 1930.” Hjalmar Schacht, the president of the German Reichsbank, meeting in Paris that year with a committee of economists called to decide how much Germany could pay in war reparations, announced that Germany could pay none at all unless its former colonies, stripped from it after the war, were returned. “This was such a striking statement to make that it caught my attention, and I concluded that if Hjalmar Schacht believed he could get away with this, things must be rather bad. I was so impressed by this that I wrote a letter to my bank and transferred every single penny I had out of Germany into Switzerland.”

Page 504

Adolf Hitler was appointed Chancellor of Germany on January 30, 1933. On the night of February 27 a Nazi gang directed by the head of the Berlin SA, Hitler’s private army, set fire to the imposing chambers of the Reichstag. The building was totally destroyed. Hitler blamed the arson on the Communists and bullied a stunned Reichstag into awarding him emergency powers. Szilard found Polanyi still unconvinced after the fire. “He looked at me and said, ‘Do you really mean to say that you think that [Minister] of the Interior [Hermann Göring] had anything to do with this?’ and I said, ‘Yes, this is precisely what I mean.’ He just looked at me with incredulous eyes.” In late March, Jewish judges and lawyers in Prussia and Bavaria were dismissed from practice.72 On the weekend of April 1, Julius Streicher directed a national boycott of Jewish businesses and Jews were beaten in the streets. “I took a train from Berlin to Vienna on a certain date, close to the first of April, 1933,” Szilard writes. “The train was empty. The same train the next day was overcrowded, was stopped at the frontier, the people had to get out, and everybody was interrogated by the Nazis.73 This just goes to show that if you want to succeed in this world you don’t have to be much cleverer than other people, you just have to be one day earlier.”

Page 510

“I took a train from Berlin to Vienna on a certain date, close to the first of April, 1933,” Szilard writes. “The train was empty. The same train the next day was overcrowded, was stopped at the frontier, the people had to get out, and everybody was interrogated by the Nazis.73 This just goes to show that if you want to succeed in this world you don’t have to be much cleverer than other people, you just have to be one day earlier.”

Page 543

HOPE OF TRANSFORMING ANY ATOM What, Lord Rutherford asked in conclusion, were the prospects 20 or 30 years ahead?78 High voltages of the order of millions of volts would probably be unnecessary as a means of accelerating the bombarding particles. Transformations might be effected with 30,000 or 70,000 volts… . He believed that we should be able to transform all the elements ultimately. We might in these processes obtain very much more energy than the proton supplied, but on the average we could not expect to obtain energy in this way. It was a very poor and inefficient way of producing energy, and anyone who looked for a source of power in the transformation of the atoms was talking moonshine.

Note: Brilliant man but so wrong.

Page 567

“As the light changed to green and I crossed the street,” Szilard recalls, “it … suddenly occurred to me that if we could find an element which is split by neutrons and which would emit two neutrons when it absorbs one neutron, such an element, if assembled in sufficiently large mass, could sustain a nuclear chain reaction.83, 84

Page 641

Most young people learned no more than the orthodoxy of science. They acquired “the established doctrine, the dead letter.” Some, at university, went on to study the beginnings of method.96 They practiced experimental proof in routine research. They discovered science’s “uncertainties and its eternally provisional nature.” That began to bring it to life.97

Page 705

Which still left the question of what standards scientists consulted when they passed judgment on the contributions of their peers. Good science, original work, always went beyond the body of received opinion, always represented a dissent from orthodoxy. How, then, could the orthodox fairly assess it? Polanyi suspected that science’s system of masters and apprentices protected it from rigidity. The apprentice learned high standards of judgment from his master. At the same time he learned to trust his own judgment: he learned the possibility and the necessity of dissent. Books and lectures might teach rules; masters taught controlled rebellion, if only by the example of their own original—and in that sense rebellious—work. Apprentices learned three broad criteria of scientific judgment.109 The first criterion was plausibility. That would eliminate crackpots and frauds. It might also (and sometimes did) eliminate ideas so original that the orthodox could not recognize them, but to work at all, science had to take that risk. The second criterion was scientific value, a composite consisting of equal parts accuracy, importance to the entire system of whatever branch of science the idea belonged to, and intrinsic interest. The third criterion was originality. Patent examiners assess an invention for originality according to the degree of surprise the invention produces in specialists familiar with the art. Scientists judged new theories and new discoveries similarly. Plausibility and scientific value measured an idea’s quality by the standards of orthodoxy; originality measured the quality of its dissent.

Page 798

It seems probable that J. J. Thomson sat eager young Ernest Rutherford down in the darkly paneled rooms of the Gothic Revival Cavendish Laboratory that Clerk Maxwell had founded, at the university where Newton wrote his great Principia, and kindly told him he could not serve God and Mammon at the same time. It seems probable that the news that the distinguished director of the Cavendish had written the Olympian Lord Kelvin about the commercial ambitions of a brash New Zealander chagrined Rutherford to the bone and that he went away from the encounter feeling grotesquely like a parvenu. He would never make the same mistake again, even if it meant strapping his laboratories for funds, even if it meant driving away the best of his protégés, as eventually it did. Even if it meant that energy from his cherished atom could be nothing more than moonshine. But if Rutherford gave up commercial wealth for holy science, he won the atom in exchange. He found its constituent parts and named them.

Note: I feel kinda bad for the guy. These rich dudes convinced him that money ain’t no thing, while living comfortable lives themselves. They thought they were serving the common good, but surely the masses benefited from having access to the radio.

Page 879

They discovered that each different radioactive product possessed a characteristic “half-life,” the time required for its radiation to reduce to half its previously measured intensity.

Note: This changed by the time I learned it

Page 174

Religious conflict broke early. Niels “believed literally what he learnt from the lessons on religion at school,” says Oskar Klein. “For a long time this made the sensitive boy unhappy on account of his parents’ lack of faith.” Bohr at twenty-seven, in a Christmastime letter to his fiancée from Cambridge, remembered the unhappiness as paternal betrayal: “I see a little boy in the snow-covered street on his way to church.214 It was the only day his father went to church. Why? So the little boy would not feel different from other little boys. He never said a word to the little boy about belief or doubt, and the little boy believed with all of his heart.”215

Note: School is at fault.

Page 405

Bohr learned about radiochemistry from de Hevesy.268 He began to see connections with his electron-theory work. His sudden burst of intuitions then was spectacular. He realized in the space of a few weeks that radioactive properties originated in the atomic nucleus but chemical properties depended primarily on the number and distribution of electrons. He realized—the idea was wild but happened to be true—that since the electrons determined the chemistry and the total positive charge of the nucleus determined the number of electrons, an element’s position on the periodic table of the elements was exactly the nuclear charge (or “atomic number”): hydrogen first with a nuclear charge of 1, then helium with a nuclear charge of 2 and so on up to uranium at 92. De Hevesy remarked to him that the number of known radio elements already far outnumbered the available spaces on the periodic table and Bohr made more intuitive connections. Soddy had pointed out that the radio elements were generally not new elements, only variant physical forms of the natural elements (he would soon give them their modern name, isotopes). Bohr realized that the radio elements must have the same atomic number as the natural elements with which they were chemically identical. That enabled him to rough out what came to be called the radioactive displacement law: that when an element transmutes itself through radioactive decay it shifts its position on the periodic table two places to the left if it emits an alpha particle (a helium nucleus, atomic number 2), one place to the right if it emits a beta ray (an energetic electron, which leaves behind in the nucleus an extra positive charge).

Note: All obvious if you already know it, but I think our textbooks undersold the genius level intuition involved.

Page 468

Planck, a thoroughgoing conservative, had no taste for pursuing the radical consequences of his radiation formula. Someone else did: Albert Einstein. In a paper in 1905 that eventually won for him the Nobel Prize, Einstein connected Planck’s idea of limited, discontinuous energy levels to the problem of the photoelectric effect. Light shone on certain metals knocks electrons free; the effect is applied today in the solar panels that power spacecraft. But the energy of the electrons knocked free of the metal does not depend, as common sense would suggest, on the brightness of the light. It depends instead on the color of the light—on its frequency. Einstein saw a quantum condition in this odd fact. He proposed the heretical possibility that light, which years of careful scientific experiment had demonstrated to travel in waves, actually traveled in small individual packets—particles—which he called “energy quanta.” Such photons (as they are called today), he wrote, have a distinctive energy hv and they transfer most of that energy to the electrons they strike on the surface of the metal. A brighter light thus releases more electrons but not more energetic electrons; the energy of the electrons released depends on hv and so on the frequency of the light. Thus Einstein advanced Planck’s quantum idea from the status of a convenient tool for calculation to that of a possible physical fact.

Note: I don’t think my textbook explained why Einsteins 1905 work was so revolutionary.

Page 544

“On the constitution of atoms and molecules” was seminally important to physics. Besides proposing a useful model of the atom, it demonstrated that events that take place on the atomic scale are quantized: that just as matter exists as atoms and particles in a state of essential graininess, so also does process. Process is discontinuous and the “granule” of process—of electron motions within the atom, for example—is Planck’s constant. The older mechanistic physics was therefore imprecise; though a good approximation that worked for large-scale events, it failed to account for atomic subtleties.